Synthesis and some properties of 7 H -naphth $[3,2,1-c d]$ azulen-7ones and related compounds

Noritaka Abe, ${ }^{*}{ }^{a}$ Hiroyuki Fujii, ${ }^{a}$ Kahei Takase ${ }^{b}$ and Tadayoshi Morita ${ }^{*}{ }^{b}$
${ }^{a}$ Department of Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
${ }^{b}$ Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-Ku, Sendai 980-8578, Japan

Received (in Cambridge, UK) 9th February 2001, Accepted 5th April 2001
First published as an Advance Article on the web 18th May 2001
$7 H$-Naphth[3,2,1-cd]azulen-7-ones are synthesized by the intramolecular Friedel-Crafts cyclization of diethyl 4-phenylazulene-1,3-dicarboxylate derivatives with polyphosphoric acid (PPA). Treatment of 7 H -naphth $[3,2,1-c d]$ -azulen-7-one with methyl trifluoromethanesulfonate or perchloric acid gives 7-methoxynaphth[3,2,1-cd]azulenium trifluoromethanesulfonate or 7-hydroxynaphth[3,2,1-cd]azulenium perchlorate. Both spectroscopic inspection and molecular orbital calculations for 7-hydroxynaphth[3,2,1-cd]azulenium ion show that the tropylium moiety is a main contributor to the ground state in the resonance structure. The syntheses of 7 H -azuleno $[1,8-b c]$ phenanthren- 7 -ones and 5,7-dihydrodinaphth $\left[3,2,1-c d: 1^{\prime}, 2^{\prime}, 3^{\prime}-i j\right]$ azulene-5,7-diones are also described.

The benz[$c d]$ azulenyl system 1, a theoretically interesting odd non-alternant analog of the phenalenyl system $2,{ }^{1}$ has attracted attention and some synthetic studies to the parent hydrocarbon 3^{2} and its alkyl derivatives, ${ }^{3}$ and the ketonic and the iminic derivatives $4-7^{2,4-14}$ of this system were made. In connection with this series, the cyclohept $[c d]-s$-indacene $\mathbf{8}^{15}$ and cyclohepta-[def]fluorene-4,8-dione 9^{16} were synthesized, and we also communicated the synthesis of 7 H -naphth $[3,2,1-c d]$ azulen- 7 -ones $\mathbf{1 0}^{17,18}$ as a benzolog of the benz[cd]azulenyl system (see Chart 1). In this paper, we report the full details of the syn-

1

2

3

4

5

7

8
Chart 1

9
thesis and some properties of $7 H$-naphth $[3,2,1-c d]$ azulen-7ones and 7 H -azuleno[1,8-bc]phenanthren-7-ones. Furthermore, the synthesis of the 5,7-dihydrodinaphth[3,2,1-cd:1', $\left.2^{\prime}, 3^{\prime}-i j\right]$ -azulene-5,7-dione system, which is a formally dibenz-annelated cyclohepta[def]fluorene-3,5-dione, is also described.

Results and discussion

Treatment of diethyl 4-phenylazulene-1,3-dicarboxylate ${ }^{19,20}$ 11a with polyphosphoric acid (PPA) at about $100{ }^{\circ} \mathrm{C}$ for 7 h gave two kinds of colored products, 7 H -naphth[3,2,1-cd]azulen-7one 10a and ethyl 7 -oxo- $7 H$-naphth[3,2,1-cd]azulen-5-carboxylate 12a, in 10 and 60% yield respectively (Scheme 1). Alkaline

11a: $X=H$
11b: $X=C l$
11c: $X=M e$
11d: $X=P h$

$$
\begin{array}{ll}
\text { 10a: } \mathrm{G}=\mathrm{X}=\mathrm{H} ; & \text { 12a: } \mathrm{G}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{H} \\
\text { 10b: } \mathrm{G}=\mathrm{H}, X=\mathrm{Cl} ; & \text { 12b: } \mathrm{G}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Cl} \\
\text { 10c: } \mathrm{G}=\mathrm{H}, \mathrm{X}=\mathrm{Me} ; \text { 12c: } \mathrm{G}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Me} \\
\text { 10d: } \mathrm{G}=\mathrm{H}, \mathrm{X}=\mathrm{Ph} ; \text { 12d: } \mathrm{G}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Ph}
\end{array}
$$

Scheme 1
hydrolysis of 12a, followed by decarboxylation upon heating at $300^{\circ} \mathrm{C}$ gave 10a. When the reaction of 11a with PPA was performed at room temperature for 2 days, only compound 12a was obtained, in 67% yield. Alkaline hydrolysis of 11a, and successive treatment of the obtained carboxylic acid with hot PPA for 3 h , gave 10a in 61%. The structures of these compounds were deduced by their spectroscopic data as well as elemental analysis and mass spectra. In a similar manner, compounds 11b-11d were treated with PPA and gave 7 H -naphth-[3,2,1-cd] azulen-7-one derivatives ($\mathbf{1 0 b}-\mathbf{1 0 d}$ and $\mathbf{1 2 b}-\mathbf{1 2 d}$). The results are listed in Table 1.

In the IR spectra of 7 H -naphth[3,2,1-cd]azulen-7-ones 10a10d and 12a-12d, absorptions of the ring carbonyl were seen at $1620-1640 \mathrm{~cm}^{-1}$. The lowering of the carbonyl frequency should arise from a high polarization of the carbonyl group. This is consistent with the fact that compounds 10a and 12a did not react with carbonyl reagents, such as hydroxylamine or phenylhydrazines.

Table 1 Cyclizations of diethyl 4-phenylazulene-1,3-dicarboxylates

Run	Compound	Method ${ }^{\text {a }}$	Products	Yield (\%)
1	11a	a	10a (10)	12a (60)
2	11a	b	10 a (-)	12a (67)
3	11a	c	10a (61)	12a (-)
4	11b	a	10b (14)	12b (68)
5	11b	b	10 b (-)	12b (99)
6	11b	c	10b (90)	12b (-)
7	11c	a	10c (26)	12c (54)
8	11d	a	10d (21)	12d (51)
9	11d	b	10d (-)	12d (99)
10	11d	c	10d (78)	12d (-)
11	16a	a	17a (10)	18a (60)
12	16a	b	17a (-)	18a (85)
13	16a	c	17a (47)	18a (-)
14	16b	a	17b (7)	18b (76)

${ }^{a}$ Method a: PPA, heat at $100^{\circ} \mathrm{C}$ for 7 h . Method b: PPA, room temperature for 2 days. Method c: 1) KOH, reflux, 2) PPA, $100^{\circ} \mathrm{C}$ for 3 h .

The ${ }^{1} \mathrm{H}$ NMR spectra of $7 H$-naphth[3,2,1-cd]azulen-7-ones $\mathbf{1 0 a}-10 d$ and 12a-12d are listed in Table 2. The ${ }^{1} \mathrm{H}$ NMR spectrum of 10a in trifluoroacetic acid shows a downfield shift of the ring protons, especially those of the seven-membered ring. In addition, its electronic spectrum in acid is remarkably different from that in neutral solvent. These results suggest that 10a exists as the naphth[3,2,1-cd]azulenium ion $\mathbf{1 3}$ in acidic medium (Scheme 2).

Methylation of compound 10a with methyl trifluoromethanesulfonate and perchloric acid gave 7-methoxy-naphth[3,2,1-cd]azulenium perchlorate 14. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}$ resembles that of $\mathbf{1 0 a}$ in trifluoroacetic acid except for the OMe signal. 6-Chloro-7-hydroxynaphth-[3,2,1-cd] azulenium perchlorate 15 was isolated by treatment of 10b with trifluoroacetic acid- 70% perchloric acid. In the IR spectrum of $\mathbf{1 5}$, the OH signal at $3100 \mathrm{~cm}^{-1}$ together with the rather weak signal at $1610 \mathrm{~cm}^{-1}$ assignable to a carbonyl were seen. The result suggests that the cation 15 maintains a partial $\mathrm{C}=\mathrm{O}^{+}-\mathrm{H}$ character.

In order to gain insight into the structures of 7 H -naphth-[3,2,1-cd] azulen-7-one and its cationic system (10a and 13), ab initio molecular orbital calculations by Gaussian 98 using RHF/6-31G* were performed; we have previously presented the calculation of π-electron density of naphth $[3,2,1-c d]$ azulenium cation. ${ }^{17}$ The molecular diagrams (bond lengths and total atomic charges) of $\mathbf{1 0 a}$ and $\mathbf{1 3}$ are shown in Fig. 1. The bond lengths of 10a show the existence of bond-alternation in the seven-membered ring, and the total atomic charges show that
Table 2 The ${ }^{1} \mathrm{H}$ NMR chemical shifts of $7 H$-naphth[3,2,1-cd]azulen-7-ones 10a-10d, and 12a-12d and $7 H$-naphth[3,2,1-cd]azulenium cations $\mathbf{1 4}$ and $\mathbf{1 5}$. $\delta /$ ppm (pattern, coupling constant $J / H z$)

Compound	H-1	H-2	H-3	H-4	H-5	H-6	H-8	H-9 $\mathrm{H}-10$	H-11	Others
10a $\left(\mathrm{CDCl}_{3}\right)$	8.40-8.60 (m)	7.78 (dd, 10.0, 2.2)	7.46 (br t, 10.0)	8.26 (td, 10.0, 2.2)	7.14 (d, 4.2)	8.26 (d, 4.2)	$8.10-8.30$ (m)	7.40-7.70 (m)	$8.40-8.60$ (m)	
10a $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$	9.00 (br d, 10.0)	8.90 (br t, 10.0)	8.88 (br t, 10.0)	8.94 (br d, 10.0)	7.53 (d, 5.2)	8.41 (d, 5.2)	8.60-8.80 (m)	7.90-8.20 (m)	9.60-9.80 (m)	
10b $\left(\mathrm{CDCl}_{3}\right)$	$8.00-8.50$ (m)	7.81 (td, 10.0, 2.0)	7.40-7.70 (m)	$8.00-8.50$ (m)	6.98 (s)		$8.00-8.50$ (m)	7.40-7.70 (m)	$8.00-8.50$ (m)	
10b $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$		$8.70-9.20$ (m)			7.60 (s)		$8.70-9.20$ (m)	8.10-8.40 (m)	9.80-10.10(m)	
10c (CDCl_{3})	8.40-9.00 (m)	7.30-8.30 (m)		8.40-9.00 (m)	7.02 (s)		8.40-9.00 (m)	7.30-8.30 (m)	$8.40-9.00$ (m)	2.94 (s, Me)
10d $\left(\mathrm{CDCl}_{3}\right)$		$7.40-8.60$ (m)			7.29 (s)		7.40-8.	(m)		$7.40-8.60$ (m, Ph)
$14\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$		$8.60-9.30$ (m)			7.78 (d, 5.7)	8.65 (d, 5.7)	$8.60-9.30$ (m)	$8.00-8.35$ (m)	$9.80-10.10$ (H, m)	4.95 (s, OMe)
$15\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$		$8.70-9.30$ (m)			7.66 (s)		$8.70-9.30$ (m)	8.00-8.40 (m)	$9.70-10.00$ (m)	
12a $\left(\mathrm{CDCl}_{3}\right)$	8.27 (br d, 9.8)	7.78 (br t, 9.8)	7.56 (br t, 9.8)	9.41 (br d, 9.8)		8.55 (s)	7.95-8.15 (m)	7.40-7.60 (m)	8.15-8.35 (m)	$\begin{aligned} & 1.46(\mathrm{t}, J 7.0, \mathrm{Me}), 4.37 \\ & \left(\mathrm{q}, 7.0, \mathrm{CH}_{2}\right) \end{aligned}$
12b $\left(\mathrm{CDCl}_{3}\right)$		7.30-8.40 (m)		$9.00-9.20$ (1H, m)			7.30-8.	(m)		$\begin{aligned} & 1.50(\mathrm{t}, 7.2, \mathrm{Me}), 4.47 \\ & \left(\mathrm{q}, 7.2, \mathrm{CH}_{2}\right) \end{aligned}$
12c (CDCl_{3})	7.70-8.40 (m)	7.30-7.60 (m)		9.00-9.30 (m)			7.70-8.40 (m)	7.30-7.60 (m)	7.70-8.40 (m)	$\begin{aligned} & 1.46(\mathrm{t}, 7.2, \mathrm{Me}), 2.95 \\ & (\mathrm{~s}, \mathrm{Me}), 4.42\left(\mathrm{q}, 7.2, \mathrm{CH}_{2}\right) \end{aligned}$
12d (CDCl_{3})	7.70-8.40 (m)	7.50-8.10 (m)		$9.40-9.60$ (m)			$7.70-8.40$ (m)	$7.50-8.10$ (m)	7.70-8.40 (m)	$\begin{aligned} & 0.97(\mathrm{t}, 7.1, \mathrm{Me}), 4.14 \\ & \left(\mathrm{q}, 7.1, \mathrm{CH}_{2}\right), 7.52(\mathrm{br} \mathrm{~s}, \\ & \mathrm{Ph}) \end{aligned}$

$E($ RHF $)=-724.818349969$

Bond lengths

Atomic charges

Atomic charges

Fig. 1 Calculated bond lengths and total atomic charges for optimized structures of 7 H -naphth[3,2,1-cd]azulen-7-one 10a (left) and its protonated structure $\mathbf{1 3}$ (right) by Gaussian 98 using RHF/6-31G*

14

15

Chart 2
the seven-membered ring has slightly cationic character; the results indicate that 10a has some heptafulvene character as well as dipolar character. The atomic charges of $\mathbf{1 0 a}$ suggest that the C-5 position (-0.039) would be reactive towards electrophiles, and C-2 (0.053), C-3 (0.011) and C-4 (0.043) towards nucleophiles. In the molecular diagram of $\mathbf{1 3}$, the bond length of $\mathrm{C}=\mathrm{O}$ was lengthened $(1.313 \AA)$. The bond lengths of the seven-membered ring (1.380-1.398 \AA) did not show any bond alternation, and the atomic charges of the carbons of the seven-membered ring are cationic. These inspections of the bond lengths and the total atomic charges of the cation 13 show that a resonance form $\mathbf{1 3 C}$ is the main contributor to the ground state of $\mathbf{1 3}$. This supports the interpretation of the spectral data.

We next examined the cyclization of two diethyl 4-(α-naphthyl)azulene-1,3-dicarboxylates (16a, 16b). Treatment of 16a with hot PPA for 6 h gave 7 H -azuleno[1,8-bc]phen-anthren-7-ones ($\mathbf{1 7 a}$ and 18a) in 7% and 60% yield, respectively (Scheme 3). In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7 a}$, a couple of AB doublets were seen at $\delta 8.07$ and $8.63(J 8.4 \mathrm{~Hz})$ and this shows that the condensation occurred at the 2 -position of the naphthalene moiety of 16a. In the IR spectra of 17a and 18a, the lower-lying ring-carbonyl absorptions were again seen at

16a: $X=H$
16b: $X=C I$
17a: $G=X=H ;$ 18a: $G=\mathrm{CO}_{2} E t, X=H$ 17b: $\mathrm{G}=\mathrm{H}, \mathrm{X}=\mathrm{Cl} ; \mathbf{1 8 b}: \mathrm{G}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{Cl}$
Scheme 3

1610 and $1627 \mathrm{~cm}^{-1}$. These findings are consistent with the assignments of $\mathbf{1 7 a}$ and $\mathbf{1 8 a}$ as 7 H -azuleno[$1,8-b c]$ phenanthren7 -ones. Similarly, treatment of $\mathbf{1 6 b}$ with PPA gave $\mathbf{1 7 b}$ and $\mathbf{1 8 b}$. The results of some reactions of $\mathbf{1 6 a}$ and $\mathbf{1 6 b}$ are listed in Table 1.

In similar manner, we examined a cyclization of diethyl 4,8-diphenylazulene-1,3-dicarboxylates. Treatment of 19a with PPA at $100^{\circ} \mathrm{C}$ for 5 h gave the desired 6-methyl-5,7-dihydro-dinaphth[3,2,1-cd:1', $\left.2^{\prime}, 3^{\prime}-i j\right]$ azulene-5,7-dione 20a in 68% yield (Scheme 4). The mass spectrum of 20a showed a

Scheme 4

molecular-ion peak at $m / z 346$, and in the IR spectrum two coupled carbonyl signals were seen at $v 1642$ and $1621 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum, signals appeared at $\delta 3.83(3 \mathrm{H}, \mathrm{s}), 7.20-$ $7.80(6 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{t}, J 10.4)$ and $8.20-8.60(4 \mathrm{H}, \mathrm{m})$. These were consistent with the structure assigned. Similar treatment of $\mathbf{1 9 b}$ with PPA gave 20b in only 10% yield.

To increase the yield, we next examined the cyclization of ethyl 4,6-diphenyl-7-oxo-7 H -naphth $[3,2,1-c d]$ azulene- 5 -carboxylate 21 with PPA and obtained 6-phenyl-5,7-dihydro-dinaphth[3,2,1-cd: $1^{\prime}, 2^{\prime}, 3^{\prime}-i j$]azulene-5,7-dione 20c in 70% yield (Scheme 5).

Scheme 5
The electronic spectrum of 20a in trifluoroacetic acid differs from that in chloroform and resembles that of $7 H$-naphth-[3,2,1-cd] azulen-7-one 10a in conc. sulfuric acid. The spectrum
of 20a in conc. sulfuric acid differs from that in trifluoroacetic acid; the maxima of longest wavelength shifted to shorter wavelength and strengthened. These suggest the generation of both monocation and dication species. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 20c in trifluoroacetic acid, the ring signals resonated at rather low field, except for the phenyl group at C-6, at $\delta 7.90-8.20(4 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-2,-3,-9$ and -10), 8.50-9.00 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1,-4,-8$ and -11), $8.99(1 \mathrm{H}, \mathrm{t}, J 11.0, \mathrm{H}-13)$ and $9.73(2 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H}-12$ and -14$)$, whereas those of 20c in sulfuric acid resonated at slightly higher field then those of the monocation, at $\delta 7.60-8.60(8 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 8.85(1 \mathrm{H}, \mathrm{t}, J 11.0, \mathrm{H}-13)$ and $9.45(2 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H}-12$ and -14). This suggests that the dication has the nature of an antiaromatic pericyclic conjugated 20π system.

To complement our analysis of the nature of the monocation and the dication, the structures of 20a, the monoprotonated cation 22 and the diprotonated cation 23 were studied by ab initio molecular orbital calculations by Gaussian 98 using RHF/6-31G*. The bond lengths and the atomic charges show that 20a deviates slightly from symmetry and that the bond alternation is small. In addition the bond lengths of the carbonyl groups are both $1.024 \AA$. Total atomic charge showed that the seven-membered ring is slightly positive. These data show that 20a has inherently a 1,3-dibenzoylazulene-like character rather than peripheral conjugation. When consideration of the molecular orbital calculations on the monocation 22, the bond length of $\mathrm{C}=\mathrm{O}^{+}-\mathrm{H}$ was lengthened into $1.314 \AA$ and that of $\mathrm{C}=\mathrm{O}$ was shortened to $1.198 \AA$. The divergence of the bond lengths of the seven-membered ring is very small (1.383-1.397 \AA). These data suggest that the contribution of the resonance form 22B is large. The structure of dication 23 has a symmetric feature and the bond lengths of $\mathrm{C}=\mathrm{O}^{+}-\mathrm{H}$ are both $1.297 \AA$; the bond length of the $\mathrm{C}=\mathrm{O}$ bond of the protonated carbonyl is lengthened. The cationic charge is distributed over all of the ring carbons including the benzene ring, and the atomic charge on the oxygen is only -0.164 . These suggest that the resonance form 23B, a 20π peripheral structure, contributes to the ground state as does 23 (see Chart 3).

Experimental

Mps are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra (60 MHz) were recorded on a Varian A-60D spectrometer (60 MHz) and a Varian HA100 spectrometer (100 MHz), and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE $400 \mathrm{~S}(100.6 \mathrm{MHz})$ using deuteriochloroform as solvent with tetramethylsilane as internal standard unless otherwise stated; J-values are recorded in Hz. Electronic spectra were taken with an Hitachi EPS-3 spectrophotometer. IR spectra were recorded for KBr pellets on a Shimadzu IR-27 infracord unless otherwise stated. Mass spectra were taken with an Hitachi RMU-6D mass spectrometer at 25 eV . Kieselgel 60 and Wako-gel C-200 were used for column chromatography.

Cyclization of diethyl 4-phenylazulene-1,3-dicarboxylates with PPA

Typical procedure. (a) A solution of diethyl 4-phenylazulene-1,3-dicarboxylate ${ }^{19,20} 11 \mathrm{a}(0.110 \mathrm{~g})$ in PPA $(5 \mathrm{ml})$ was heated on a water-bath at $100^{\circ} \mathrm{C}$ for 7 h . Water was added to the mixture which was then extracted with chloroform; then the extract was washed with water, dried over sodium sulfate, and evaporated. The residue was subjected to silica gel column chromatography. Elution with chloroform gave 7 H -naphth-[3,2,1-cd]azulen-7-one 10a ($0.007 \mathrm{~g}, 10 \%$) and ethyl 7-oxo-7Hnaphth $[3,2,1-c d]$ azulene-5-carboxylate 12a ($0.041 \mathrm{~g}, 60 \%$), successively.
(b) A solution of diethyl 4-phenylazulene-1,3-dicarboxylate 11a $(0.220 \mathrm{~g})$ in PPA (5 ml) was set aside for 2 days at room temperature, and worked up as above. Chromatography of the residue with chloroform gave $\mathbf{1 0 a}(0.170 \mathrm{~g}, 67 \%)$.

(c) A mixture of 11a (0.900 g) in ethanol (100 ml) and potassium hydroxide $(1.00 \mathrm{~g})$ in water $(20 \mathrm{ml})$ was refluxed for 1 h , then neutralized with hydrochloric acid. The resultant precipitate was collected by filtration and dried in vacuo. A mixture of the solid and PPA was heated on a waterbath at $100^{\circ} \mathrm{C}$ for 3 h , and worked up as above. Chromatography of the residue with chloroform gave 10a $(0.360 \mathrm{~g}$, 61\%).

10a: Blue needles (from cyclohexane), mp $146.5-147^{\circ} \mathrm{C}$; $\delta_{\mathrm{C}} 122.60,125.67,125.82,126.18,127.97,130.21,130.96$, 131.72, 136.11, 136.15, 136.42, 137.27, 137.92, 137.97, 138.36, 147.39 and $179.22 ; v_{\text {max }} / \mathrm{cm}^{-1} 1629(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}$ (chloroform) $/ \mathrm{nm}$ ($\log \varepsilon) 260$ (4.40), 264 (4.41), 287 (4.31), 300 (4.28), 308 (4.24), 355 (3.71), 373 (3.89), 393 (3.97), 418 (3.60), 570 (2.91), 585 (2.90), 614 (2.89) and 670 (2.54); $\lambda_{\text {max }}\left(\right.$ conc. $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right) \mathrm{nm}(\log \varepsilon)$ 230 (4.37), 257 ($4.38, \mathrm{sh}$), 276 (4.74), 322 (4.18), 352 (3.81, sh), 399 (3.97), 437 (3.86) and 496 (3.52); m / z (rel. intensity) 230 ($\mathrm{M}^{+}, 100$), 202 (70), 201 (17), 200 (27), 199 (6), 198 (5), 176 (6), 175 (6) and 174 (7) (Found: C, 88.3; H, 5.2. $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}$ requires C, 88.7; H, 4.9\%).

12a: Violet prisms (from ethanol), mp $185-187^{\circ} \mathrm{C} ; \delta_{\mathrm{C}} 14.87$, $60.74,121.14,124.14,126.03,128.19,128.30,131.53,132.40$, 133.08, 135.72, 136.19, 138.82, 139.44, 139.66, 140.01, 142.32, 145.56, 165.32 and $179.49 ; v_{\text {max }} / \mathrm{cm}^{-1} 1704$ and $1637(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}$ (chloroform)/nm (log $\varepsilon) 271$ (4.73), 298 (4.71), 312 (4.53), 375 (4.21), 391 (4.26), 550 (3.15), 578 (3.19) and 625 (2.89); $\lambda_{\text {max }}$ (conc. $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right) / \mathrm{nm}(\log \varepsilon) 257$ (4.39), 283 (4.77), 295 (4.71), 328 (4.43), 395 (3.98), 435 (3.97) and 485 (3.77); m / z (rel. intensity) 302 ($\mathrm{M}^{+}, 74$), 274 (16), 257 (100), 246 (3), 230 (30), 229 (18), 202 (14), 201 (35), 200 (57) and 174 (8) (Found: C, 79.1; H, 4.9. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, $79.4 ; \mathrm{H}, 4.7 \%$).
Similar treatment of 11b-11d, 16a and 16b gave corresponding compounds (10b-10d and 12b-12d, 17a, 17b and 18a, 18b), respectively. Results are listed in Table 1.

10b: Blue-violet needles (from ethanol), mp $190-191{ }^{\circ} \mathrm{C}$; δ_{C} 121.39, 125.57, 126.93, 128.08, 131.02, 131.18, 131.27, 131.99, $135.62,136.05,137.11,137.25,143.46,143.98$ and 178.12; $v_{\max } /$ $\mathrm{cm}^{-1} 1631(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}$ (chloroform)/nm $(\log \varepsilon) 261$ (4.88), 292 (4.80), 299 (4.28), 308 (4.91), 382 (4.43), 402 (4.49), 550 (3.19), 578 (3.24) and 673 (2.97); $\lambda_{\text {max }}\left(\right.$ conc. $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right) / \mathrm{nm}(\log \varepsilon) 230$ (4.42), 255 (4.38), 277 (4.78), 327 (4.28), 408 (3.97), 437 (3.98) and 494 (3.51); m / z (rel. intensity) $266\left(\mathrm{M}^{+}, 38\right), 264\left(\mathrm{M}^{+}, 100\right)$, 238 (18), 236 (70), 202 (12), 201 (39), 200 (65), 199 (23), 198 (17), 176 (7), 175 (9) and 174 (17) (Found: C, 77.0; H, 3.4. $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{ClO}$ requires $\mathrm{C}, 77.4 ; \mathrm{H}, 3.4 \%$).

12b: Red-violet prisms (from ethanol), mp 202.5-204 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{C}} 14.84,61.31,118.76,119.34,125.74,128.13,129.01,131.51$, 132.37, 133.71, 135.15, 135.66, 136.92, 138.13, 138.44, 138.53, 143.49, 145.92, 164.42 and 178.08; $v_{\max } / \mathrm{cm}^{-1} 1692$ and 1637 (C=O) ; $\lambda_{\text {max }}$ (chloroform)/nm $(\log \varepsilon) 260$ (4.51), 274 (4.63), 297 (4.67), 305 (4.77), 380 (4.12), 401 (4.20), 550 (3.23) and 685 (2.69); $\lambda_{\text {max }}$ (conc. $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right) / \mathrm{nm}(\log \varepsilon) 255$ (4.38), 284 (4.80), 324 (4.39), 408 (4.01), 436 (4.04) and 510 (3.61); m / z (rel. intensity) $338\left(\mathrm{M}^{+}, 23\right), 336\left(\mathrm{M}^{+}, 64\right), 310(4), 308$ (11), 293 (32), 291 (89), 266 (24), 265 (19), 264 (65), 263 (18), 238 (5), 237 (6), 236 (15), 235 (11), 201 (20), 200 (100), 199 (27) and 198 (20) (Found: C, 71.4; $\mathrm{H}, 3.8 . \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClO}_{3}$ requires $\mathrm{C}, 71.3 ; \mathrm{H}, 3.9 \%$).

10c: Blue needles (from ethanol), mp $142-143.5^{\circ} \mathrm{C} ; \delta_{\mathrm{C}} 18.02$, $122.95,123.24,125.35,125.74,127.63,130.40,130.54,131.46$, $135.50,135.88,136.23,136.39,137.31,145.92,155.88$ and 179.97; $v_{\text {max }} / \mathrm{cm}^{-1} 1620(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}$ (chloroform)/nm $(\log \varepsilon) 262$ (4.46), 288 (4.41), 300 (4.39), 309 (4.39), 335 ($3.80, \mathrm{sh}$), 358 (3.82), 377 (4.04), 399 (4.14), 416 (3.81), 559 (3.04), 598 (3.05), 633 (2.78, sh) and 653 (2.71, sh) (Found: C, 88.5; H, 5.0 $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}$ requires C, 88.5; H, 5.0%).

12c: Red-violet prisms (from ethanol), mp 180-181 ${ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{C}} 14.93,17.34,60.75,120.14,122.30,125.54,127.85,128.08$, 130.99, 131.93, 133.07, 135.76, 136.13, 136.96, 137.17, 137.47, 138.56, 145.36, 160.03, 166.23 and $180.31 ; v_{\max } / \mathrm{cm}^{-1} 1680$ and $1628(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}$ (chloroform)/nm ($\log \varepsilon$) 272 (4.60), 301 (4.68), 308 (4.51, sh), 356, (3.91), 375 (4.11), 398 (4.20), 540 (3.08, sh), 563 (3.11) and 604 (2.88, sh) (Found: C, 79.7; H, 5.1. $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 79.6 ; \mathrm{H}, 5.2 \%$).

10d: Green needles (from ethanol), mp $194.5-146^{\circ} \mathrm{C}$; $\delta_{\mathrm{C}} 121.53,123.67,125.47,126.32,128.10,128.33,129.31$, $130.03,130.61,130.95,131.63,135.99,136.55,136.69,137.15$, 137.54, 137.78, 145.79, 155.57 and $179.06 ; v_{\max } / \mathrm{cm}^{-1} 1623$ (C=O); $\lambda_{\text {max }}$ (chloroform)/nm $(\log \varepsilon) 263$ (4.55), 290 (4.39), 312 (4.49), 390 (4.14), 410 (4.16), 564 (3.24), 603 (3.32) and 653 (3.04); m/z (rel. intensity) 306 ($\mathrm{M}^{+}, 53$), 304 (100), 276 (7), 230 (1) and 202 (2) (Found: C, 90.2; H, 4.6. $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{O}$ requires C, 90.2; H, 4.6\%).

12d: Violet prisms (from ethanol), mp $222-224^{\circ} \mathrm{C} ; \delta_{\mathrm{C}} 13.96$, $60.68,121.51,121.76,125.74,127.90,128.17,128.84,131.40$, 132.13, 132.92, 135.76, 136.50, 137.57, 138.25, 138.95, 139.32, 144.71, 157.42, 166.20 and 179.21; $v_{\max } / \mathrm{cm}^{-1} 1686$ and 1627 (C=O) ; $\lambda_{\max }$ (chloroform)/nm ($\log \varepsilon$) 270 (4.56), 301 (4.62), 310 (4.52), 380 (4.08), 399 (4.13), 540 (3.10), 568 (3.16) and 610 (2.90); m / z (rel. intensity) $378\left(\mathrm{M}^{+}, 88\right), 377$ (100), 350 (38), 349 (99), 333 (24), 306 (15), 305 (49) and 276 (6) (Found: C, 82.5; H, 4.8. $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 82.5 ; \mathrm{H}, 4.7 \%$).

17a: Green needles (from ethanol), mp $216-217^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 7.29$ $(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{H}-9), 8.07(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-5), 8.48(1 \mathrm{H}, \mathrm{d}, J 6.6$, $\mathrm{H}-8), 8.63(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-6), 7.50-7.80(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,-3$ and $-11), 7.85-8.20(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1,-4,-12)$ and $8.30-8.80(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-10$ and -13); $\nu_{\max } / \mathrm{cm}^{-1} 1610$ (C=O); $\lambda_{\text {max }}$ (chloroform)/nm (log غ) 271 (4.49), 292 (4.49), 332 (4.22), 390 ($4.04, \mathrm{sh}$), 407 (4.22), 442 (3.75), 465 (3.74), 595 (3.05) and 640 (3.03); $\lambda_{\text {max }}$ (conc. $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right) / \mathrm{nm}(\log \varepsilon) 214$ (4.57), 265 (4.65), 285 (4.51, sh), 366 (4.25), 390 (4.23) and 510 (3.85) (Found: C, 89.9; H, 4.1. $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{O}$ requires C, $90.0 ; \mathrm{H}, 4.3 \%$).

18a: Violet needles (from ethanol), mp $241-242.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.48$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{3}\right), 4.48\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{CH}_{2}\right), 7.50-8.80(7 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-1,-2,-3,-4,-11,-12$ and -13), 8.12 (1H, d, J 8.7, H-5), 8.63
$(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-6), 8.99(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$ and $9.80-10.05(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-10) ; \delta_{\mathrm{H}}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 1.66\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{3}\right), 4.73(2 \mathrm{H}, \mathrm{q}$, $J 7.2, \mathrm{CH}_{2}$), $7.80-9.10(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-1,-2,-3,-4,-11$ and -12$), 7.98$ ($1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-5$), $8.48(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-6), 9.20(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, 9.47-9.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$) and $10.07-10.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10)$; $v_{\max } / \mathrm{cm}^{-1} 1707$ and $1627(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}$ (chloroform)/nm (log ε) 281 (4.57), 303 (4.76), 315 (4.50 , sh), 386 (4.08 , sh), 403 (4.18), $470(3.97), 560(3.09), 590(3.07, \mathrm{sh})$ and $650(2.85, \mathrm{sh})$; $\lambda_{\text {max }}$ (conc. $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right) / \mathrm{nm}(\log \varepsilon) 215(4.52), 248$ (4.39), 272 (4.43), 285 (4.43), 329 (4.52), 360 ($4.40, \mathrm{sh}$), 398 ($4.16, \mathrm{sh}$) and 511 (4.04) (Found: C, 82.2; H, 4.7. $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 81.8 ; \mathrm{H}, 4.6 \%$).

17b: Green needles (from ethanol), mp $210-211^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 7.13$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 7.40-8.10(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1,-2,-3,-4$ and -11$), 7.99$ ($1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-5$), $8.20-8.60(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10,-12$ and -13$)$ and $8.55(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-6) ; v_{\max } / \mathrm{cm}^{-1} 1625(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }$ (chloroform)/nm $(\log \varepsilon) 272$ (4.46), 292 (4.44), $321(4.24, \mathrm{sh})$, 336 (4.30), 395 (3.96, sh), 412 (4.04), 463 (3.89), 568 (3.06), 606 (3.04) and 652 (2.77, sh) (Found: C, 79.9; H, 3.7. $\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{ClO}$ requires C, $80.1 ; \mathrm{H}, 3.5 \%$).

18b: Brown needles (from ethanol), mp $220-221^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.50$ ($3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}$), $4.43\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CH}_{2}\right), 7.45-8.05(5 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2,-3,-4,-11$ and -12), $7.91(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-5), 8.10-8.70$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and -13), $8.36(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-6)$ and $9.43-9.64$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10) ; \delta_{\mathrm{C}} 14.84,61.27,117.98,123.23,127.82,127.89$, $128.89,129.16,129.46,130.48,132.09,134.17,135.11,135.13$, $135.73,136.52,136.85,137.08,137.25,138.54,139.02,144.54$, 164.52 and $177.79 ; v_{\text {max }} / \mathrm{cm}^{-1} 1681$ and $1633(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}$ (chloroform) $/ \mathrm{nm}(\log \varepsilon) 250(4.41), 285$ (4.47), 300 (4.61), 337 (4.28), 392 (3.80), 409 (3.89), 466 (3.82), 540 (3.01), 568 (3.01, sh) and 615 (2.69) (Found: C, 74.1; H, 4.0. $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{ClO}_{3}$ requires C, 74.5; H, 3.9\%).

Deesterification of 12a

A mixture of 12a $(0.100 \mathrm{~g})$ in ethanol $(60 \mathrm{ml})$ and potassium hydroxide (1.00 g) in water (10 ml) was refluxed for 1 h , then neutralized with hydrochloric acid. The resulting precipitate was collected by filtration and dried in vacuo. The precipitate was heated at $300^{\circ} \mathrm{C}$ under reduced pressure for 30 min . The resulting brown powder was dissolved in chloroform, and chromatography of the solution gave $\mathbf{1 0 a}(0.005 \mathrm{~g}, 7 \%)$.

Synthesis of 7-methoxynaphth $[3,2,1-c d]$ azulenium perchlorate 14

A mixture of 10a $(0.070 \mathrm{~g})$ and methyl trifluoromethanesulfonate (1.50 g) in dichloromethane (20 ml) was stirred for 20 h at room temperature and a reddish brown precipitate $(0.072 \mathrm{~g})$ was obtained. The precipitate was dissolved in trifluoroacetic acid (3 ml), and the solution was added dropwise to a mixture of acetic acid -70% perchloric acid (10 ml) to give $\mathbf{1 4}$ $(0.070 \mathrm{~g})$ as red-brown prisms (from trifluoroacetic acid-acetic acid), $\mathrm{mp}>300^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 1590(\mathrm{C}=\mathrm{C})$ and $1082\left(\mathrm{ClO}_{4}^{-}\right)$ (Found: C, 62.4; H, 3.6. $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClO}_{5}$ requires C, $62.7 ; \mathrm{H}, 3.8 \%$).

Synthesis of 6-chloro-7-hydroxynaphth[3,2,1-cd]azulenium perchlorate 15

To a solution of $\mathbf{1 0 b}(0.100 \mathrm{~g})$ in dichloromethane (15 ml) was added 70% perchloric acid (3 ml). The resulting precipitate was collected by filtration, and recrystallized from trifluoroacetic acid -70% perchloric acid to give 15 as red prisms (110 mg), mp $>300^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 3100(\mathrm{OH}), 1610(\mathrm{C}=\mathrm{O}), 1593(\mathrm{C}=\mathrm{C})$ and $1080\left(\mathrm{ClO}_{4}^{-}\right)$(Found: C, 56.1; H, 2.8. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{5}$ requires C, 55.9; H, 2.8\%).

Cyclization of diethyl 2-methyl-4,8-diphenylazulene-1,3-dicarboxylate 19a with PPA

A solution of 19a (0.015 g) in PPA (10 ml) was heated on a water-bath at $100^{\circ} \mathrm{C}$ for 5 h . Water was added to the mixture which was then extracted with chloroform, and the extract was
washed with water, dried over sodium sulfate, and evaporated. The residue was subjected to silica gel column chromatography. Elution with chloroform gave 6-methyl-5,7-dihydrodinaphth-[3,2,1-cd:1', $2^{\prime}, 3^{\prime}-i j$]azulene-5,7-dione 20a ($0.008 \mathrm{~g}, 68 \%$) as green scales (from chloroform), $\mathrm{mp}>300^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 3.83(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 7.20-7.80(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-1,-2,-3,-9,-10$ and -11$), 7.83(1 \mathrm{H}, \mathrm{t}$, $J 10.4, \mathrm{H}-13)$ and $8.20-8.60(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,-8,-12$ and -14$) ; v_{\max } /$ $\mathrm{cm}^{-1} 1642$ and $1621(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}$ (chloroform)/nm ($\log \varepsilon$) 278 (4.70), 322 (4.69), 344 (4.40, sh), 375 (4.30), 394 (4.27), 450 (3.57, sh), 552 (3.24, sh), 577 (3.27) and 625 (3.04, sh); $\lambda_{\text {max }}$ $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) / \mathrm{nm}(\log \varepsilon) 299(4.78), 314$ ($4.69, \mathrm{sh}$), 342 ($4.24, \mathrm{sh}$), 364 (4.22), 391 (4.28), 419 (4.12), 523 (3.56, sh), 546 (3.62) and 580 (3.47, sh); $\lambda_{\text {max }}$ (conc. $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right) / \mathrm{nm}(\log \varepsilon) 237$ (4.65), 305 ($4.60, \mathrm{sh}$), 322 (4.70), 357 (4.31), 415 (4.22), 496 (3.90) and 563 (3.82); m / z (rel. intensity) $346\left(\mathrm{M}^{+}, 100\right), 318$ (10) and 290 (25) (Found: C, 86.3; H, 4.2. $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 86.7; H, 4.1\%).

Cyclization of diethyl 2-chloro-4,8-diphenylazulene-1,3-dicarboxylate 20b with PPA

A solution of $\mathbf{2 0 b}(0.030 \mathrm{~g})$ in PPA $(10 \mathrm{ml})$ was heated on a water-bath at $100^{\circ} \mathrm{C}$ for 10 h . Water was added to the mixture which was then extracted with chloroform, and the extract was washed with water, dried over sodium sulfate, and evaporated. The residue was subjected to silica gel column chromatography. Elution with chloroform gave 6-chloro-5,7-dihydrodinaphth-[3,2,1-cd:1', $2^{\prime}, 3^{\prime}-i j$]azulene-5,7-dione 20b ($0.004 \mathrm{~g}, 10 \%$) as green needles (from chloroform), $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ $8.30-8.80(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-1,-2,-3,-9,-10$ and -11$)$ and $8.90-9.60$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4,-8,-12,-13$ and -14$) ; v_{\max } / \mathrm{cm}^{-1} 1655$ and 1610 (C=O); m / z (rel. intensity) $368\left(\mathrm{M}^{+}, 38\right), 366\left(\mathrm{M}^{+}, 100\right), 340(4)$, 338 (13), 312 (9) and 310 (27) (Found: C, 78.3; H, 3.2. $\mathrm{C}_{24} \mathrm{H}_{11} \mathrm{ClO}_{2}$ requires C, $78.6 ; \mathrm{H}, 3.0 \%$).

Cyclization of ethyl 4,6-diphenyl-7-oxo-7H-naphth[3,2,1-cd]-azulene-5-carboxylate 21 with PPA

A solution of $\mathbf{2 1}^{21}(0.180 \mathrm{~g})$ in PPA (30 ml) was heated on a water-bath at $100^{\circ} \mathrm{C}$ for 8 h . Water was added to the mixture which was then extracted with chloroform, and the extract was washed with water, dried over sodium sulfate, and evaporated. The residue was subjected to silica gel column chromatography. Elution with chloroform gave 6 -phenyl-5,7-dihydrodinaphth-[3,2,1-cd; $1^{\prime}, 2^{\prime}, 3^{\prime}-i j$ azulene-5,7-dione 20c ($0.110 \mathrm{~g}, 70 \%$) as green scales (from chloroform), $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$
7.90 ($5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph}$), $7.90-8.20$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2,-3,-9,-10$), $8.50-$ $9.00(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1,-4,-8$ and -11$), 8.99(1 \mathrm{H}, \mathrm{t}, J 11.0 \mathrm{H}-13)$ and $9.73(2 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H}-12$ and -14$) ; \delta_{\mathrm{H}}\left(\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{DSS}\right) 7.51(5 \mathrm{H}$, br s, Ph), $7.60-8.60(8 \mathrm{H}, \mathrm{m}, \mathrm{H}-1,-2,-3,-4,-8,-9,-10$ and -11$)$, $8.85(1 \mathrm{H}, \mathrm{t}, J 11.0 \mathrm{H}-13)$ and $9.45(2 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H}-12$ and -14$)$; $\nu_{\text {max }} / \mathrm{cm}^{-1} 1650$ and $1621(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}$ (chloroform)/nm $(\log \varepsilon)$ 276 (4.35), 323 (4.26), 480 (2.93), 555 (2.80), 587 (2.91) and 630 (2.69); $\lambda_{\text {max }}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) / \mathrm{nm}(\log \varepsilon) 302(4.66), 315(4.58, \mathrm{sh}), 373$ ($4.09, \mathrm{sh}), 391$ (4.16), 520 ($3.52, \mathrm{sh}$), 553 (3.58) and 593 (3.40, sh); $\lambda_{\text {max }}\left(\right.$ conc $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right) / \mathrm{nm}(\log \varepsilon) 236(4.14, \mathrm{sh}), 305(4.58, \mathrm{sh})$, 325 (4.76), 359 (4.26, sh), 413 (4.22), 525 (4.14, sh), 536 (4.14) and 578 (3.76); m / z (rel. intensity) $408\left(\mathrm{M}^{+}, 100\right), 407$ (87) and 379 (17) (Found: C, 88.3; H, 4.2. $\mathrm{C}_{30} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, 88.2; H, 4.0\%).

References

1 D. H. Reid, Quart. Rev., 1965, 19, 274.
2 V. Boekelheide and C. D. Smith, J. Am. Chem. Soc., 1966, 88, 3950.
3 K. Hafner and H, Schaum, Angew. Chem., 1963, 75, 90; Angew. Chem., Int. Ed. Engl., 1963, 2, 95.
4 E. Galantay, H. Agahigian and N. Poalella, J. Am. Chem. Soc., 1966, 88, 3875.
5 K. Hafner, H. Patzelt and H. Kaiser, Justus Liebigs Ann. Chem., 1962, 656, 24.
6 S. Kuroda, M. Sugimori, S. Kawahigashi, N. Matuzaki, T. Nishiyama and S. Hirooka, Bull. Chem. Soc. Jpn., 1981, 54, 1893.

7 S. Kuroda, N. Funamizu and Y. Kitahara, Tetrahedron Lett., 1975, 3197.

8 R. Neidlein and W. Kramer, Helv. Chim. Acta, 1981, 64, 939.
9 R. Neidlein and W. Kramer, Helv. Chim. Acta, 1982, 65, 280.
10 R. Neidlein, W. Kramer and D. Scheutzow, Helv. Chim. Acta, 1982, 65, 1804.
11 R. Neidlein and W. Kramer, Liebigs Ann. Chem.. 1981, 1760.
12 W. K. Gibson, D. Leaver, J. E. Roff and C. W. Cumming, Chem. Commun., 1967, 214.
13 T. Nakadate, T. Morita and K. Takase, Chem. Lett., 1977, 591.
14 T. Morita, N. Abe and K. Takase, Formsan Sci., 1996, 49, 25.
15 I. Murata, K. Yamamoto and M. Tamura, Chem. Lett., 1974, 307.
16 R. A. Pascal, Jr. and D. M. Ho, Tetrahedron Lett., 1992, 33, 13.
17 N. Abe, T. Morita and K. Takase, Tetrahedron Lett., 1973, 4755.
18 N. Abe, T. Morita and K. Takase, Tetrahedron Lett., 1974, 3621.
19 N. Abe, T. Morita and K. Takase, Tetrahedron Lett., 1973, 3883
20 T. Morita, N. Abe and K. Takase, J. Chem. Soc., Perkin Trans. 1, 2000, 3063
21 See following paper N. Abe, T. H. Fujii, K. Takase and T. Morita, J. Chem. Soc., Perkin Trans. 1, 2001, DOI 10.1039/b101332g.

